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SELF-SIMILARITY, LP—SPECTRUM
AND MULTIFRACTAL FORMALISM

Ka-Sing LAU

ABSTRACT. This is an expository survey of recent work on self-similar measures
centered around the LP-spectrum and its relationship to the local dimension
spectrum. The relationship is the multifractal formalism proposed by physicists.
We will treat the formalism rigorously here. The open set condition and a new
weaker separation condition will be discussed in detail; several techniques for
calculating the LP-spectrum will be introduced; and the multifractal structure
of functions satisfying the two-scale dilation equations will also be discussed.

§1. Introduction. For a finite family of contractive maps {S;}72; on R¢, there
exists a unique compact subset K in R? satisfying K = |J; S;(K). The set K
can be obtained by iterating the maps through the cascade algorithm, starting
from any fixed bounded set or point. For this reason we call {S;}72; an iterated
function system (IFS) and K the attractor of the system. If we associate a set
of probability weights a; to each of the S, then the iteration will produce a
unique probability measure p satisfying

= Zaj,u ) Sj_l. : | (1.1)
j=1

In particular when the S;’s are contractive similitudes, i.e., S;z = p;R;x +
bj, 0 < p;j <1, Rja hnear isometry and b; € R?, we call the above K
a self- similar set and p a self-similar measure. If in addition the S;K’s are
disjoint, then each S;K will be an identical copy of K, the same holds for the
j restricted to S; K.

~ This basic concept of self-similarity was introduced by Mandelbrot in
his momentous monograph [M1], the above mathematical set-up was given by
Hutchinson in [Hut] and the iterated function system notion was invented by
Barnsley [Ba]. Because of its simplicity and fundamental nature, self-similarity
has been playmg a, central role in fractal geometry and has many ram1ﬁcat1ons
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e.g., self-affinity, self-conformality, non-map specifying (Moran) self-similarity
and statistical self-similarity.

There are two interesting recent developments on self-similarity concern-
ing the LI-spectrum. Strichartz raised the following general questions: Whereas
Lebesgue measure is self-similar and is the most fundamental entity in harmonic
analysis on Euclidean space, what happens if we replace Lebesgue measure by
other self-similar measures? How does a fractal or a self-similar object express
itself in the Fourier transformation side? In a series of papers ([Strl-6, STZ,
JRS]), Strichartz et al considered a wide range of topics including the fractal
Plancherel theorems, Fourier asymptotics and convolution equations of self-
similar measures, self-similar tilings, and extensions to stratified nilpotent Lie
groups. These results are contained in his very informative survey paper [Str6].
In this development one of the most 1mportant concepts is the L7-dimension
of a measure deﬁned by

dimg(u) = lim In2,; m@i)?

1
mor (@—Dla 170

where {Q;}; denote the family of h-mesh cubes. It was first defined by Reny1
[Re2, Chapter 9] as a natural generahzatlon of the entropy dirension and
various techmques have beeri developed to calculate this dimension and the

related quantltles ([L1,2], [LW1], [LN2], [JRS], [STZ]).

The second recent development concerns the relationship between the
local dimension and the L7-dimension of a measure, which has been motivated
by some physical models. Let 1 be a bounded regular Borel measure on R¢
that has compact support. For each z € R%, let Bj,(x) denote the closed ball
of radius h centered at z, and let ‘

: In p(Br(z))

fla) = dlmH{w hrgl+ —mn = o}t

. be the Hausdorff dimension of the set of all z with local dimension «.. We call
f (@) the local dimension spectrum (or singularity spectrum) of y and loosely re-
fer to p as a multifractal measure if f(a) # 0 for a continuum of c.. This spectral
parameter was first proposed by physicists to study various multlfractal models
arising from natural phenomena, e.g., turbulence, diffusion-limited aggregatlon
and percolation (Mandelbrot [M1], Frisch and Parisi [FP], Halsey et al [HJ])
and they suggested that the corresponding f(«) should be characteristic quan-
tities. In order to determine the function f(a), Hentschel and Procaccia [HP],
Halsey et al [HJ] and Frisch and Parisi [FP] introduced the following ca,lculatlon
Let 7(q) = lim, .1In>", u(Q:)?/Inh, g € R (this is called the L9-spectrum or
moment scaling exponent of 1), and let 7*(a) = inf{ga — 7(q) : ¢ € R} be the
concave conjugate of T (also known as the Legendre transformation of 7‘) They
observed the following heuristic relationship between 7 and f: -
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If the measure p is constructed from the cascade algorithm and if T and
[ are smooth and concave, then 7*(a) = f(a) (and dually, f*(q) = 7(q)):

We call such a relationship the multifractal formalism; it'is also called the
thermodynamic formalism because of its analogy to the Gibbs state, the pres-
sure and the variational principle in thermodynamics (see Bowen [B], and Bohr
and Rand [BR]). The basic mathematical question is to provide appropriate
conditions and justifications for the principle, and to reveal the basic structure
of the underlying dynamical systems. In a number of cases the principle has
been verified rigorously, e.g. the hyperbolic cookie-cutter maps (Rand [R]), the
critical maps on the circle with golden rotation number (Collet et al [CLP])
and the maximal measures associated with rational maps on the complex plane
(Lopes [Lo]). A more substantial advance concerns the multifractal measures
defined by the various forms of self-similarity. By now a rather complete the-
ory is known when the iterated function systems consist of similitudes that
satisfy certain separation conditions ([AP], [F2], [CM], [EM], [01,2,3], [Ril,2]).
There are also new developments for non-separated cases [LN1,2] and also for
self-similar functions ([J], [DL3]). Despite all these cases, however, the premse
range of validity of the multifractal formalism is still not clear

In this paper we will give an expository survey on self-similar measures
centered around the L?-dimension and the multifractal formalism. The set-
up is also tailored to fit into the framework of harmonic analysis . If the IF'S
satisfies the so-called open set condition of Hutchinson [Hut], then there is
an exact formula for the L9-dimension of the associated measure (Section 3).
The situation is more complicated without this condition. A typical case is the
infinitely convolved Bernoulli measure (ICBM) which is generated by the IFS:
Siz = pz, Sox = pr+ 1—p,1/2 < p < 1 with probability 1/2 on each map.
Unlike the case where 0 < p < 1/2, there are still many unanswered questions
for such measures despite the fact that they have been studied since the 30’s.
In Section 4 we will consider the LI-dimension of the class of ICBMs that are
singular. Our calculations of the L?-dimension in Section 3 and 4 depend on the
L9-density (see (2.2)). It will be shown that in all cases the densities possess a
certain periodic property inherited from (1.1). For the special case ¢ = 2, this
property has been used to study the Fourier asymptotic average of u ‘th‘rou'gh
a Tauberian theorem ([L1], [LW1]). It will be stated in Section 3. A

We consider the multifractal formalism in Section 5. After introducing the
basic facts about concave and conjugate concave functions, we give some general
results for the principle. We also outline the main idea of an elegant theorem
of Cawley and Mauldin [CM] on the formalism when the S;K,j = 1,--- ;m,
- are disjoint. This condition is stronger than the open set condition. Section 6
alms at weakening that condition. We introduce the weak separation property
(WSP) on the IFS. The open set condition will imply this property; so do some
of the ICBM p, with 1/2 < p < 1 described above. Under this new assumption
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the multifractal formalism can be justified. The proof is qulte dlfferent from
the previous case and a sketch of it will also be given.

Another interesting and potentially important aspect of the WSP is at-
tributed to the scaling functions defined by the two-scale dilation equations.
Such functions are used to generate wavelets and fractal surfaces, and are of
great importance in wavelet theory [D] and constructive approximation the-
ory [MP]. The IFS for the scaling function satisfies the WSP. Daubechies and
Lagarias [DL3] calculated the L%-spectrum 7(q) and the singularity spectrum
f(ca) for some special scaling functions and showed that the multifractal for-
malism holds in a certain sense even though the coefficients (corresponding to
the probability weights) need not be positive; but no general theory is available
yet. This interesting development and the calculation of the L4-spectrum for
solutions to the dilation equation [LM] will be discussed in Section 7.

§2. The Le- dlmensmn

Throughout the paper we assume that u is a positive bounded regular
Borel measure on R% with bounded support. We will first introduce some def-
initions of dimension of a measure so as to capture the idea that u(By(z))
behaves like h* as h — 0. The most basic one is the local dzmenszon of W at

z defined as
i A(Bn(z))

h—0+ nh > " € supp(u).

In general we would like to have further global information of the'mé;isiire, and
this can be obtained by L9-averages and related concepts. For & > 0 and ¢ € R,
let Sn(q) = sup ), u(Br(w;))? be the g-variation of p, where the supremum
is taken over all disjoint family of closed h-balls {By,(z;)}; with z; € supp(pu).
Note that 0 < Sp(g) < co holds for all ¢ € R and for ¢ =1, C; < Si(q) < C
for some Cy, Cs independent of h. We define the Lq-spectrum of u by

7(¢g) = lim ——————lnSh(Q)

R. oo(2.1)

Let dim;(E) denote the lower box dimension of a set E. It is easy to Show (see
for example [LN1]) that

Proposition 2.1. 7 : R — [~00,00) is an increasing concave funct1on with
7(1) =0 and 7(0) = —dlmB(Supp ).

Let {Qr(x;)}; be the h-mesh cubes centered at z; and mtersectmg Supp i.
For ¢ > 0, 7(q) has an equivalent and more familiar expression obtained by
taking cubes from the h-meshes instead of packing with the disjoint A-balls:

o) tim @)

B0+ Inh
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The equality is false for ¢ < 0. However Riedi [Ril] showed that if the Q4 (z;)’s
are replaced by @h(a:z-)’s which are three times larger and have the same cen-
ters at x;, then the above equality holds for all ¢ € R . There are two other
expressions for 7(q) which have also been used frequently: let

I(g)= | w(Br@)%de and  Ih(g)= | n(Ba(z))*  du(z).
R4 Rd

For ¢ > 0, a simple argument shows that h=¢1,(g) and h~%I,(q) are equivalent
to Sp(q) in the sense that their quotients are bounded by constants. It follows
that

Infu(Bu@)ide I f p(Ba(@))* du()
Inh b0 Inh

—d.

7(q) = lim
h—0t

For q > 1 we define the lower L?-dimension of p by
dim, (1) = 7(q)/(q — 1),
and for ¢ = 1.

dim, (1) = lm ianiM(Bh(ii)h)lnM(Bh(xi))7
h—0+

where {By(z;)}; is a disjoint family of balls as before and the infimum is taken
over all such families. For ¢ = co and —oo, we let

In(inf, u(By(z)))
Inh ’

1 B
dim_ (¢) = lim n(supmlu(h h(x))), dim__ (u) = lim
h—0+ - h—0+

where the supremum and infimum are taken over all z € supp(u). By an ob-
vious modification we can define the corresponding upper dimensions, and the
dimensions if the limits exist. Note that dim;(u) is also known as the en-
tropy dimension of u (Rényi [Rel]), dimg(u) the correlation dimension, and
‘L9-dimension, ¢ > 1, the generalized Rényi dimension [HP] b(in fact all these
dimensions have been discussed by Renyi [Re2], Chapter 9 on information the-
ory). Heuristically, dim () is the limit of dim,(u) as ¢ — 1 in accordance with
’'Hospital’s rule (since 7(1) = 0). The following simple proposition is proved in
[LN1].

Proposition 2.2. Let Dom 7 = {q: 7(gq) < co}. Then ,
(i) Dom 7 =R if and only if dim_eo (1) < 00;, Dom T = [0,00) if
and only if dim_ . (u) = 0.
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(i) Jim dim,(p) = dim, (1) < dimeo (1) < d.

Another very useful notion is the-(g, a)-upper density of y defined by:

54 B T 1 1/q -
Do (p) = hli)fg{r(m/M(Bh@))qu) : (2.2)
It is clear that if 0 < DY (u) < oo, then dim (1) = o (note that there is

a switch of the lower and upper signs in the two expressmns) and if 0 <
D4(u) < DL(u) < oo, then dimg () = a. In the next two sections we will
use this density parameter extensively to calculate the L9-dimension for the
self-similar measure.

To conclude this section we recall that the Hausdorff dimension of u at
is defined by
dimy () = inf{dimy F : p(R?\ E) = 0}.
It is known that (Frostman’s Lemma) if the local dimension of u at = equals
a for p almost all z, then dimy(u) = «; furthermore Young [Y, Theorem 4.4)
proved that this « also equals the entropy dimension of x .

B §3. Self-similar measures and the open set condition.

‘Unless otherwise stated we assume that {S; }7ty is an IFS of contrac-

tive similitudes. For any fixed m € N, we use J = (jy, - ,5%), where j; €
{1,---,m}e = 1,---k, k € N, to denote the multi- 1ndex and |J| = k its
length. Also we let

Syg=080--08; and cy=cj ey
for any {c; };”:1 in R. By using the e011traction principle it is easy to show that
there exists a compact subset K in R% invariant under S;, i.e. K = U; S5 (K).

We say that {S;}7L, satisfies the open set condition [Hut] if there exists a
bounded nonempty open set U(called the basic open set) such that

Si(U)CU and S;(U)NS;(U)=0 Vi#j. (3.1)
“Under this Condltlon the invariant set K is contained in U and UI Jl=k 07 (0)

for each k. Moreover each component K N U of K is an identical copy (up
to a scaling multiple) of the set K. Let H, denote the a-Hausdorff measure.
Suppose s satisfies 3 " ; pf = 1, then 0 < Hy(K) < oo. Such s is called the
similarity dimension of K, it is elementary to show that it equals the Hausdorff
dimension of K.

The open set condition plays a crucial role in the self-similar structure of
K. Once a basic open set U is given we can construct trivially another basic
open set V' such that VN K = () by taking V = U\ K. An important question is
whether there exists a basic open set V such that VN K # (0. ThlS is answered
by the following theorem of Schief [Sc] (see also [BG]). ‘
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Theorem 3.1. The following statements are equivalent:
(i) {S;}jr, satisfies the open set condition;
(ii) There exists a basic open set U such that U N K # ¢;
(iii) Hs(K) > 0 where s satisfies ) 5, p§ = 1.

Let p = Z;nzl ajpo Sy ! be the self-similar measure defined by (1.1). We
will first consider the support of p with respect to the basic open set U under
the open set condition. In [LW1] the following dichotomy result was proved:
either u(U) =1 or u(U) = 0. Theorem 3.1 yields

Corollary 3.2. Suppose {S;}j%, satisfies the open set condition, then there
exists a basic open set U such that u(U) = 1 for any self-similar measure u
defined by (1.1). Equivalently u(8U) = 0 where OU denotes the boundary of
U. , '

Proof. Let U be chosen as in Theorem 3.1 (ii). Let # € U] K, then there exists -
a sequence of indices {j,,} such that {z} =1, S, (U), where J, = (j1,- -+ ,Jn)-

It follows that Sy, (U) C U for some n. Note that

w(S1 @) = 3 asS5H(85,)) = asp(0) > 0.
|J|=n
This implies that w(U) > 0 and by the dichotomy criterion, u(U) = 1.

The corollary was also proved by Graf [Gr]. We remark that p(0U) = 0 is-
a technically important condition and has been used in several proofs (Theorem
3.3-6 below) in previous papers where it was assumed in addition to the open
set condition. Corollary 3.2 implies that such an assumption is redundant.

For a given set of probability weights {a;}/", we call

m m
a:Zajlogaj/Zlogpj
j=1 j=1

the similarity dimension of u. If s satisfies ) pj =1,thena; = pi,J=1---,m
maximizes the above «, with maximum value s. In this case 4 equals a constant
multiple of H, restricted to K and {p;} is called the natural weights for the
family {S;}7%,. For general weights, we have the following theorem.

Theorem 3.3. Let pu be a self-similar measure defined by {5 };”___1 and suppose
{S;}5v, satisfies the open set condition. Let o be the similarity dimension and
i DABAE) |
={z: 1 =} 3.2
ARG Y o (3.2)

Then p is concentrated in G and dimy G = dimy () = dim; (p) = (< ).
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The theorem was first proved by Geromino and Hardin [GH] (and im-
plicitly by Cawley and Mauldin [CM]) using the ergodic theorem, Frostman’s
lemma and a theorem of Young, and assuming & separation condition stronger
than the open set condition. It was also proved by Strichartz [Str2] using Corol-
lary 3.2 and the law of iterated logarithm to construct the G.
' We next consider the quotient A=(4+a(a=1) [(By (2))9dz in the defini-

tion of (g, )-density (2.2). This quotient inherits the self-similar property from
(1.1) and exhibits periodic behavior as A — 07 when « is appropriately chosen.
Specifically we have:

Theorem 3.4. Let u be a self-similar measure defined by {S;}72, and suppose
{Sj}jL, satisfies the open set condition. For ¢ > 0, the Lq—spectrum 7(q)

satisfies
Z alp _T(Q) : (3.3)

. \
Furthermore, if we let p(h) = @ Jra #(Br(z))?dz, then

o(h) =p(h)+o(h) ash— 0" (3.4)

where p > 0 is a non-zero constant if {—1In p;}7, is non-arithmetic; p(\t) =
p(t) if {—Inp;}7, is arithmetic and X is the least common divisor.

Theorem 3.4 was proved in [LW1] (for the case ¢ = 2). In the following
~we outline the proof for the case ¢ > 0. This will serve as an illustration of
how the well known renewal equation in (3.6) [Fe] can be applied to calculate
the dimension. In [La] Lalley also used the renewal equation to calculate the
packing dimension in another application.

First let us assume the stronger separation condition that the basic open

set U satisfies o
Si(U)NS;(U) =9, @ # (3.5)

so that for h sufficiently small, {S; (Bh(:c)) *, are mutually disjoint. For
" brevity we write y o S5 ' = p; and T(q) = a. By (1.1),

o) = s [ D (B e

- hd—l—a Zaﬁ/ﬂj(Bh(m))qu ~ (by disjointness)

= Ti¥a Z al / (B b (x))%dx (change of variable)

ﬂza 57 (p])




SELF-SIMILARITY, LP-SPECTRUM AND MULTIFRACTAL FORMALISM 63

for sufficiently small h. It follows that for h > 0, p(h) = 3_; ag,o;acp(;h;) +o(h).
By a change of variables the functional equation can be adapted to the following
convolution equation (renewal equation)

f(z) = / " f(@ - y)do(y) + S(x), © >0 (3.6)

where S(z) is a continuous integrable function with lim;—,co S(z) = 0. In order
to have a nontrivial bounded solution, o must be a probability measure. This
implies that ) afp;* =1 and the expression of ¢ in Theorem 3.4 follows from
the known solution of the renewal equation [Fe].

Without the stronger condition in (3.5) we have to modify the second

identity by ,
_ L q , q
o) = 1 S0 [ (Bu(w)da +(h)
J

where
2

< mr [ (Cam(Bue) s
U, {z: dist(z,0U;)<h} 7

The estimation of the error term requires more work, it is the place we need
to choose the basic open set U such that u(0U) = 0 as remarked at the end of
Corollary 3.2. The technicalities of the estimation can be found in [LW1].

There are various applications of the asymptotic formula for ¢(h) [Str6]. -
The most interesting case is for ¢ = 2 and Theorem 3.4 yields an asymptotic
average behavior of the Fourier transformation of the measure. This is a con-
sequence of an extension of Wiener’s Tauberian Theorem proved in [LW1]:

Theorem 3.5. Let u be any bounded regular Borel measure in R<. Then the
following two expressions are equivalent:

i [ [ (o)l -p| =0,

h—0+

T—00

. 1 N
= R CGI q<T>} =0,

<t | |
where p, q are multiplicative periodic functions with the same period.

For more information on this the reader can refer to [JRS], [Strl-6].
As a simple example, consider the standard Cantor measure p. Its Fourier
transformation is A(€) = e%/2 ][>, cos(£/3%). It was observed by Wiener
and Wintner [WW] that (i(¢) is uniformly bounded by log2/log3, and there
is no limit as || — oo. The following picture is the the graph of Y(T) =
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T-(=a) Jié<r 12(E)1?d€ where o = log 2/log 3, and the horizontal coordinate |
is plotted on the logsT scale instead of T ‘ SRR R
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There is an important vector-valued extension of self-similar measures. In
(1.1) the measure y is a linear combination of pieces that are similar to u, the
vector-valued version says that each measure in the family (i.e. each coordinate
measure) is a linear combination of pieces similar to the other measures in the
family. This can be formulated in terms of a very general directed graph device
introduced by Mauldin and Williams [MW] and many others (e.g., Bandt,
Barnsley, Berger, Bedford, Culik and Dube, Dekking). Let (V,FE) denote a
directed graph where V is a set of vertices and FE is the set of edges such that
for each u € V, there are some edges e € E going out from u. Let E, denote
the set of edges from u and let E,, be the set of edges from u to v. A path
"is a sequence of edges v = (e, en) Where e; € Euyju,,, for some sequence
{u1, - yunt1} CV and a cycle if ug = upqq.

Suppose {Sc}ecr is a family of similitudes on R? such that the simi-
larity ratios {r(e)}ecr satisfy r(vy) = r(e;)---r(e,) < 1 for each cycle v =
(e1,-+ ,en), then there exists a unique family of compact sets {K, },cv satis-
fying o

KEy=|J | Se(.) forall veV.
UEV e€F .,

This was called a graph-directed construction by Mauldin and Williams [MW],

[EM] (some other names are mixed self-similar set or recurrent IFS). The open
set condition of {S.}ecr can be defined as follows: there exists a family of
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bounded nonempty open sets {U, },ev such that
Se(Uy) C U, for all e € E,,

and {S.(U,)} are disjoint for v running through V and e € Ey,. In this case
the measure p,, is supported by U,,. In [W] Wang extended Theorem 3.1 that
such {U,}yev can be chosen so that U, N K, # 0, provided that the graph
(V, E) is strongly connected (i.e. each u,v € V can be joined by a path from u
to v). (The statement is false without the strong connectedness.)

We can also define a self-similar family of positive measures {, }yev as

Z Z p(e),uuoS 1 for all ’UEV - (3.7)

ueV eEEm,

where the weights p(e) are posmve and satisfy

Z Z ple)=1 forall veV.

u€V ecE,,

Assuming the open set condition and using a similar argument in the proof
of Theorem 3.4, it was proved in [Str4] that if (V, E) is strongly connected and
{S.}ecr satisfies the open set condition, then the L?-spectrum 7(q),q > 0 of
the family {p, }yey is the positive number such that the matrix

[ > s 38

CEE'MJ

has maximal eigenvalue 1. ((3.8) was first used by Edgar and Mauldin [EM] in
their set up of multifractal formalism.) Moreover the density quotient ¢, (h) =
p(@+7(@) [ 4, (By(2))9dz has an asymptotic multiplicative periodic property
as in Theorem 3.4. The exact expression can be found in [Str4] and [LWC].

The notion of a self-similar family of measures can be applied to consider
some nonlinear IFS. A conformal map is a C! map Whose differential at each
point is a similitude. By replacing the similitudes w1th the conformal maps,
it is easy to extend the definition of self-similar measures to self-conformal
measures. This includes the important exa,mple of measures on Julia sets where
the mappings S; are the local inverses of a rational function. To find the LP-
dimension of a self—conformal measure, one can cut the support of 4 into small
pieces to form a family of self-conformal measures, which is approx1mately self-
similar. The dimension of the original u can then be approximated by using
(3.7) on the new family [Str4]. Similar method has also been dicussed in [F1,
Section 9.3] for calculating the box dimension and Hausdorff dimension of the
corresponding self-conformal set.
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Recently Mauldin and Urbanski [MU] have extended the self-conformal
measures to allow the IF'S to have infinitely many conformal maps.

Our construction of self-similar measures (1.1) depends on the IFS, i.e.,
it is a map-specifying construction. There is a simple non-map-specifying con-
struction called the Moran construction [CM]: Let E be a nonempty subset
such that (E°)” = E (E°,E~ means the interior and the closure of E re-
spectively). Let Ey = E and suppose we have constructed F J with J =
(1,5 dn), Ji € {1,---,m}, let Ey; C E; such that F and E(;;) has
similarity ratio 0 < p; < 1. The invariant set K = N, UI J|=n £ is called the
Moran fractal. If we associate probability weights a; with each j, we will have
an invariant probability measure p. Theorem 3.3 will hold under the condition
that at each level n, the family {E; : |J| = n} is disjoint. The open set con-
dition can also be adjusted by assuming that for each n, {ES : |J| = n} is
disjoint. However in this case we do not know whether the other theorems in
this section can be extended.

84. Bernoulli convolutions.
For0 <p<llet Si(z)=pz, So(z)=pz+(1-p), z€R and let
p(= 1) be the self-similar measure defined by

1 1
= E»,u,oSfl—I- gluoS;l. (4.1)

For 0 < p < %, p is the Cantor type measure which is the most fundamental
self-similar measure. For —;— < p < 1 the measure is more mysterious; the basic
difference is that it does not satisfy the open set condition any more and there
is overlapping on the attractor [0,1] under the two similitudes. This creates
a lot of complication; it is not known when the measure will be absolutely
continuous or singular, or how to calculate the dimensions when it is singular.
In this section we will discuss some recent work in this direction. The techniques
may be useful as canonical approaches to handle IFS that do not satisfy the
open set condition.

First we see that the measure can be identified with the infinite Bernoulli
convolution as follows: Let {X,}2° ; be a sequence of i.i.d. Bernoulli random
variables (i.e. X, takes values {0,1} with probability T each). For 0 < p < 1
let X = (1—p)3 o p"X,, and let p be the corresponding distribution, then u
is the infinite convolution of the sequence {1, }%2 , where p,, is the point mass
measure concentrated at 0 and (1 — p)p™ with weights % each. Following the
notation of Alexander and Yorke [AY] we call such p an infinitely convolved
Bernoulli measure (ICBM). Note that the Fourier transformation of 1 defined
here and in (4.1) are both equal to e(1=P)¢/2T]%  cos(p™(1 — p)€); and hence

they define the same measure.

It is easy to show that if p = 2-1/% f = 1,2,---, then u is absolutely
continuous. More fascinating results are known for some classes of algebraic
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integers. Let § = p~! and let By, - ,Bm denote the algebraic conjugate of
8. Erdés and Salem [S] proved that 8 is a P.V. number (ie. |5| > 1 and
18| < 1,4 =1,---,m) if and only if i(§) ~» 0 as |{| — oo, in this case p is
singular. On the other hand Garsia [G] showed that if 8]],4,51 8 = 2, then u
is absolutely continuous. Note that in this case it is necessary that |G;] > 1 for
alle=1,--- ,m. ’ ‘

A classification of p for u, to be absolutely continuous or singular remains
widely open, in particular it is not known even for the case when p is a rational
number. In another direction Erdds proved that for almost all p sufficiently
close to 1, then p is absolutely continuous [E]. He conjectured that the result
should also be true for almost all 1/2 < p < 1. This has also been recently
solved positively by Solomyak [So].

In the following we discuss the Li-dimension of the ICBM pu(= Lp) With
p~! a P.V. number. We will apply the self-similar identity (4.1) to the quotient |
@(h) ‘= h=(1*®) [ u(By(z))?dz as in Theorem 3.4. However the technique is
quite different now because the open set condition is not satisfied here. We are
able to calculate the I9-dimension of such p when ¢ > 1 is an integer. For the
special case p = (v/5 — 1)/2, we have an exact formula that works for all ¢ > 0.

For convenience we consider the case ¢ = 2 first. We let

B0 = iz [ MBu@)(BA)

where
: { z=t+a, -
Y —o00o <t< 0
y =1t
denotes the line parallel to the diagonal with z-intercept at a, and f7 denotes

the line integral on <. Since p is concentrated on a dense subset of [0,1] we see
that the “effective domain” of the above integral is on v N ([0,1] x [0, 1]) (see
the following figure).

Lemma 4.1. Suppose v has an z—intercept at a.
(i) If ' has x—intercept at —a, then @Sya)(h) = @EY?‘)(h).
(i) a ¢ [1,1] if and only if there exists ho > 0 such that ®{(h) = 0
for all 0 < h < hg. ’ ,
(iii) For a = 1 or —1, there exists § > 0 such that for 0 < a <
1, 3 (h) = o(h®) as h — OF.

Let A be the set of “basis elements” that spans a real vector space (A).
It follows from a simple line integral argument that

B 1 onn () = 1@ (B) + -+ + 2@ (R).
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By substituting: the expression for 4 in (4.1) into <I>(a)(h) (as in the proof of
Theorem 3.4), we have

o0 = 8, (%) #2250 (7) + 2 (7))

4p
_ 1 h
= @;@7(—1427(0#%” <;) R 4

where
a 1-p
© T =1+ <— +€ )’
Kl poF
y=t,

for e = —1,0 and 1. Let T : (A) — (A) be defined by T(y) = f)/( D4
2+(0) 4 7(1)(see the figure), then we can rewrite (4.2) into the followmg basic
relationship

1 () h
d4p

Proposit'io:n‘4.2. For0<a< 1, h >0, we have @(Wa)(h) = T(q)( ).

/]

A S

Let g = 0, 4 = 7(60) € A be the line with z—intercept at 0, and let
e = (750"'6" 1)( ) Where €n, = —1,0 or 1. In this case the z—intercept of
Yoo En g —EZZ —0 €n—jp 7. Let

['= {760;;@» i ne N}, Io= {’y € I' : v has z—intercept at (—1, 1)}

Let § = p~1, then I" and Ty can be identified with the following sets in R:

W-——{S:S-——Zen_jﬂj, neN}, WO:{SEW |s|;B—1——1}
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We can regard W as the states of the family of random paths such where the
n-th state is

n—1
) 4 =S
Jj=0

It is easy to show that once the path steps outside the interval ( ﬁ T 3= 1)
then it will never return to the interval. Inside the interval there may be ﬁmtely
or infinitely many states. For our case we have

Proposition 4.3. If p=! = 8 is a P.V. number, then Wy is a finite set.

An elementary proof of this is given in [L2, Theorem 2.5]. It also follows
from a lemma of Garsia [G, Lemma 1.51] that there exists ¢ > 0 such that
the distance between two members in W is at least ¢. The converse of the
proposition is not known and it seems to be a very interesting question.

Under the P.V. number assumption, (I'g) is a finite dimensional linear
subspace, and T is invariant on (I'g), by the remark before Proposition 4.3.
Together with Proposition 4 2 and Lemma 4.1 (iii), the map T : (T'g) — (I'o)
satisfies . "

o (@) 1.6
(k) = 72 @TOEV)( ) +o(r®).
Let A be the maximal eigenvalue of T' with eigenvector 7. Furthermore, let
a =In(A/4)/In p. Then

(@) 1y — gl (I 5
B (h) = (;> + o(h®). (4.3)
It follows that @%a)(h) is continuous and asymptotically multiplicatively peri-
odic with period p. From this we have [L2]

Theorem 4.4. Suppose 1/2 < p < 1 and p~! = 8 is a P.V. number. Let \
be the maximal eigenvalue of T': (I'g) — (T'¢) and let o = In(\/4)/1n p. Then
0 <a< 1 anddimg(p) = . ”

As a simple corollary we see that u is singular. This offers a different proof
from that of Erdos and Salem through the Fourier transformation. Observe that
in the above, 7 =37 . ¢iv; for some ¢; > 0, and that 7% is in Tg.

If T is irreducible, then ¢; > 0 for all ¢ and we can use (4.3) to show that
(ID,(YOS)(h) = () [ (B (x))2dz is multiplicatively periodic with period p as
h — 07F; and thus so is the Fourier average U(®)(r) = r—(1-) I Iﬂ(§)|2d£ as
r — oo by Theorem 3.5. In all the examples for P.V. numbers that we have
calculated (see below), the operator T' is irreducible. We do not know whether
this holds in all cases. ’ o
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We remark that by Lemma 4.1(i) we can identify vy_, with -, in the
expression of @(Wa) (h). We can hence reduce the size of I'y by considering instead

Iy = {fy : v has z—intercept in [0, l)},

and TF : (T'g) — (['Y) defined by T+ = moT, where  is the natural projection
of (T'p) onto (I'l"). Note that T and T have the same maximal eigenvalue and
hence Theorem 4.3 is the same if we replace T by T't.

We can summarize the above discussion to an algorithm to construct
matrices A and A" representing T' and T respectively:

(I) To find Wy, we start with 0, use induction on s(™ = gs(n=1) 4

én, €n = 0,1, or —1, and keep those s(™ that are < (zl3; and

distinct from the previously chosen sD... =1

(IT) To construct the matrix A associated with T, we assign to each entry
(t,s) € Wy x Wy the number

1 if t=0s4+¢ €==1,
Q(g,s) = 4 2 if t=8Bs+¢€ =0,

0 otherwise.

(IIT) To construct AT corresponding to T we truncate the columns that
correspond to s < 0, and define aa ) = O(t,s) T O(—t,s) by (t,8) €
Wit x Wy
To illustrate, let p = (v/5—1)/2; s0 3 = (v/5+1)/2. By using p?>+p—1 = 0,
it is easy to show that Wy = {0, 1, p, ~1, —p} and W = {0,1, p}. The matrix
representations of T' and T are

and

O = O = N
SO = OO
OO O N =
_0 o000
SON O O =
S NN
- O O
o N =

By working out the characteristic polynomial of the matrix A", we have
Corollary 4.5. If p = (v/5 — 1)/2, then dimg(p) = o where a satisfies
(4p%)° - 2(40%)* —2(4p%) + 2 = 0.

The following is the list of P.V. numbers for which dimg(x) has been
calculated, using Theorem 4.3. The minimal polynomial is the defining equation
for B = p~!. (The fourth row is the golden number.)
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Min. Polynomial P Size of AT A dima (p,)
2% —z4 —1=0 0.5086604 6 2.0573712 0.9835654
z—z3.. —1=0 0.5187901 5 2.1118009 0.9733295
zd—z% —z—1=0 0.5436890 4 2.2226941 0.9642200

z2—z—1=0 0.6180334 3 12.4811943 0.9923994
23 —z2—1=0 0.6823275 25 2.7302333 0.9991163
zt-z3—1=0 0.7244919 627 2.8979776 0.9999895
2}~z —1=0 0.7548776 90 3.0185190 0.9999901

For g > 2, there are some slight complications with regard to Lemma

4.1(i), (ii), and so we make the following modifications. Let

Ir1 = t + ai,

Y(=Ya): —o0o<t< oo

Tq =t + aq,
be a line in R? parallel to the diagonal. Note that 7, does not define the
line uniquely: 7, = 7 if and only if a — b = ¢(1,---,1) for some ¢ € R.
Let € = (e1,- - ,€) With ¢; = 0 or 1, and let 7{¢) be the line with z; =
t+ (% +'ei1—;3), 1<4<gq. Alsolet € =0, v¢" = 7o be the diagonal line, and
let fyeo"'en be defined indﬁctively. On the set

Ty = {,Y:,Yeo...en : ’Yﬂ(07qu 750’ nc N},

we define T : (I'o) — (To) by T'(v) = 3=, (9. Now let

() () - i /# Bu(z1)) - u(Bn(zg)).

By substituting the self-similar identity (4.1) of 1 and using a change of vari-
ables as before, we have the basic identity

. 1 () /b
B (h) = 3o @;(1/)(;)+o(h5).

If p' = B is a P.V. number, then (I'g) is a finite set and we can find the
maximal eigenvalue A of T" on (I'g). It follows from the same argument as in
Theorem 4.4 that

In(\/29)
Inp

7(a)
qg—1

,  dimg(p) =

7(q) =
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For a given v = 74, let 4/ be obtained by perrﬁuting the coordinates of a, it
is clear that @%a)(h) = @g?)(h). We can use this property to reduce T to T
‘defined on

8:{’Y€F DY = Ya, 01 2@2...2aq:0}
and preserve the maximal eigenvalue. To construct a matrix A? to represent

T°, we first identify v € I'y with its intercept on the plane z, = 0. The
corresponding set is '

_ n—1 ‘ o .
Wy = {s = (81, ,8¢-1,0) 1 5; = Zey“‘z)ﬁ’, €; =—1,0or 1} NncC
i=0

where C'= {(s1,"*+ ,54-1,0) : |si| < (zigy, |si — 85| < iy, 0< 4,5 <g—1}
is the projection of the open cube (0, (—ﬂ%‘lj)q onto the z, = 0 plane along the

diagonal. Let
Wg'—‘{SEW():SlZ---ZSq_1>O}.

We can use the following algorithm to construct the matrix A%:

(I) Starting from 0, suppose we have constructed s € W in the (n —
1)th-step. Let t = 8s+e€, ¢ =0o0r1, 1<i<gq. Rearrangetto
ty so that t,(1) = to(2) -+ > to(q) and let s =t, — to(q)(l, e 1),
then keep the s’ that is in W§ and is distinct from those previously
chosen. (If there is no new number the process is finished.)

(II) For the column of the matrix A% corresponding to s, we assign, for
cach s’ € W, the number of appearances of the ¢ that gives s’ € W
in the rearrangement.

As an example we consider p = (v/5 —1)/2. By using the above algorithm
we found that approximately dimg(p) ~ 0.9924, dims () =~ 0.9897, dimy(u) ~
0.9875. Also in [Hu], Hu used an algebraic method and showed that

dimeo () = —(1/2) — log2/logp ~ 0.9404. It is seen that for ¢ > 2 the
Li-dimension lies in a very narrow region close to 1.

Furthermore, for p = (v/5 — 1)/2, we have an exact formula for the L4-
dimension. It depends on the following reduction of an overlapping case into a
nonoverlapping case, due to Strichartz et al [STZ]. Let

Tox = 5151z = oz,
Tl.’I?A: 52815156 = 518252:13 = ,03.’17 + Pz,
Toz = 5355z = p?z + (1 — p?).

Note that (0, 1) is the disjoint union of 73(0,1), ¢ = 1,2,3 so that the T}’s
satisfy the open set condition. On the other hand the self-similar identity (4.1)
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is reduced to the following “second order” self-similar identities defined by the
T,'s: For A C[0,1],

[ W(TToA)] [z 0 0 M(TOA)
pThiToA) | =15 1 0 |u(@4)
w(DTA)| [0 2 0 u(TrA)
(W(ThTiA)] [0 5 0] [w(ToA)
p(TiTiA) | =10 L 0f | w(TA)
| (w(ToT1A) | 0 7.0 M(TgA)
(W(TTzA)] [0 3 0] [w(ThA)
p(MTA) | =10 7 5| |w(TDA) (4.4)
| W(TT2A) | [0 o 1] [u(Ta4) |

We denote the three matrices by Fy, Pi, P,. It follows from (4.4) that for
A C[0,1] and for J = (j1,- - jg) with 7, =0 or 2, >
11

' 1
pw(TiTyTh A) = cgu(TyA) where ¢y = 1 [0,1,0] Py |1]. (4.5)
To calculate the Li-dimension of p, we will produce a renewal equation for

fo ))4dz as in the proof of Theorem 3.4.
Observe that

/ w(Bp(z))dx = / / / Bh )qd:r:
Tol0,1]  JTu[o,1]  JTu[0,1]

=p /0 (Bh(Tox))qu +p '/0 (Bh(Tlm))qd:B +p /O (Bh(Tgm))qda(:46>
Let

. ot
q)g )(h) = h1+a/0 u(Br(Tiz))dz, =0, 1, 2.

Then @éa)(h) = @ga)(h). By repeating the above argument of splitting the
interval [0,1] into three pieces as in (4.6), applying (4.5) and using the change
of variables, we have

(i) @ (a)( h) = 4p12a (I)(a)(%) + 4p2a @(a)(;h’f) + eo(h);

(if) DI (h) = o520 (X simp €)™ CEFDG( (ko) + e(h),

where eq(h),e(h) = o(h®) for some § > 0. These error terms arise due to the
fact that the measure p on By, (T (z)) satisfies different identities on the two
sides of the interval when z is a boundary point of T;|0, 1] By using the renewal
equation (see Sectlon 3) we conclude that [LN2]:
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3. For p=(v/5—1)/2 and for 0 < q < a, then the Li-spectrum 7(q) satisfies

i ( 3 c?,) o= (@EEB)T(@) — q.

k=0 |J|=k

Moreover 7(q) is differentiable and the entropy dimension dim;(p) is given by

7'(1) = 9—111—’52 Z cslney.

k=0 |J|=k

Due to some technicalities we are not able to verify the first identity for
all ¢ > 0 yet. The number 9 in the second expression comes from ) p> ,(2k + -
3) 221 sj=k ¢s- We have checked that for ¢ = 2 and 3, the 7(g)’s thus obtained
coincide with those from the algorithm in the preceding method. We remark
that the entropy dimension of the ICBM for p = (v/5 — 1)/2 had also been
considered in [G], [AY], [AZ], [LP] and the other P.V. numbers in [PU]. The
entropy dimension calculated in [AZ] is 0.99692; the calculation from the above
formula is close to this number but needs more iterations. Using the above
-technique to reduce an overlapping case to a nonoverlapping case seems to be
quite restrictive. Besides the golden number, another P.V. number has been
found to have the same property ( p~?! satisfies 2° — 22 + 22 — 1 = 0), but most
of them fail. The question of obtaining a formula of 7(¢) for the other P.V.
numbers is hence still open. ‘

§5. The multifractal formalism.

We first recall some simple facts about concave functions. Let 7 : R —
[—00,00) be a upper semi-continuous concave function (it is important to in-
clude the value —o0) with effective domain Dom 7 = {z : —oo < 7(z) < 00} #
{0, and let

7*(a) = inf{az — 7(z) : z € R}

. be the concave conjugate (or the Legendre transformation) of . It is easy to
show that 7* is also upper semi-continuous and concave, 7** = 7 and 7(z) +
7*(a) > az, for all z,a € R. (Note that the definition of 7* is still valid even if
7T is not concave, in that case 7** is the concave envelope of 7.) For z € Dom T,
we let 07 (z) C R be the subdifferential of T at z, i.e.,

or(z) ={a: 7(y) <7(z) +aly—z) forall ye R} |

We will use the following facts frequently [Ro]: o € 97(x) if and only if 7*(a) +
7(z) = az, which is also equivalent to ay — 7(y) achieving its minimum at
y ‘= z. O7* is the inverse of &7 in the sense that z € d7*(a) if and only if
a € 0r(z); (Dom 7*)° = (Qumin, max) Where amin = inf{a: o € dr(x), = €
Dom 7} and amax =sup{a: «a € d7(z), € Dom 7}. 7 is said to be smooth
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at £ € (Dom T7)° if d7(z) is a singleton, say {a}. This means that « is the
derivative of 7 at z.

T is said to be strictly concave at z if there exists an o € 97(x) satisfying

T(y) < 7(z) + a(y —z) for all y# . (5.1)

For concave functions, the smoothness and strict concavity have a very nice
duality relationship, namely

Proposition 5.1. Suppose T is a concave function on R.

(i) If T is smooth at x € (Dom 7)° with Ot(z) = {a}, then 7* is strictly
concave at «, i.e., T(f) < 7*(a) + (8 — ) for all B # .

(ii) If * is strictly concave at oo and the above strict inequality holds
for some x € O7*(a), then T is smooth at x.

In the rest of this section we assume that 7(g) is the L-spectrum of a
positive bounded regular Borel measure as before. Let oy € O7(0), then for -
q € 0t*(@), amin < a < ap implies that ¢ > 0 and ap < @ < amax implies
g < 0. It is elementary to show that

Proposition 5.2. Let 7* be the concave conjugate of 7. Then

(i) (Dom 7*)° = (Qmin, ¢max) € (0,00) and 7* > 0 on Dom 7*.

(ii) Let g € 97(0), then 7* has a maximum at og with 7*(ap) = —7(0).
Consequently 7* is increasing on [oumin, ] and is decreasing on
[CY(), ama.x) .

We will first introduce a counting function to reveal the basic relationship
between the local dimension of i and 7*. Let By, denote a disjoint family of
closed balls of radii h centered at points in supp(u). For ai, ‘@z € (Dom 7*)°,
a1 < o, we define the counting functions :

Np(ai, ) =sup#{B: B € By, h** < u(B) < h*'}.
By

For apin < a < ag, we observe that

#{B: B € By, h** < p(B) < h*r} h9t) <3 " u(B)? < Si(g).
B

It follows that, after taking the supremum over all such families,
hietI N, (o — €, + €) < Su(q).

In view of 7(q) = lim, . InSy(q)/Inh, for any £ > 0, there exists he > 0
such that for 0 < h < he, Sy(q) < h™(@~¢¢ Hence for 0 < h < A,

Np(o—¢, a+¢€) < pdate)prla)—Ee _ p—7"(a)=(E+a)e

and a similar estimate holds for ag < a < amax. Consequently we have
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Proposition 5.3. Let i be a bounded regular Borel measure and let T be the
LA-spectrum, then be for any o € (Dom 7*)°,

i Tm In Np(ao—e€, a+e) |

: < 7 ().
e—0+ h—0+ —Inh =T (a)

For the reverse inequality we have

Theorem 5.4. If in addition 7* is strictly concave at «, then

) — InNp(a—e€, a+te)
lim lim =
e—0+ h—0+ —Inh

().

The strict concavity assumption on 7* at « is roughly equivalent to the
smoothness of 7 at ¢ € 07*(a) (Proposition 5.2). The advantage of using the
strict concavity is that the corresponding inequality is easier to handle. The
proof of the theorem is quite elementary and is given in [LN1]. We remark that
a similar theorem was proved by Riedi in [Ril,2] by assuming that the one-sided
limit for 7(q) exists and making use of Ellis’ theorem on large deviation. Also
another version of the theorem is proved in [F1] by showing that the conjugate
of the counting function is 7, and again assuming that the limits in the counting

function exist. '

, Our main goal is to investigate the relationship between 7*(a) and the
Hausdorff dimension of the set of = such that u(Bp(z)) ~ h* as h — 0. More
precisely we define _

i 1B ()

K = :
(&) ={z: lim ———

=al,

" and define K () and K (o) by replacing the lim and li_m'sigris respectively in
the above definition. Proposition 5.3 and the Vitali covering theorem yields

Theorem 5.5. Let yu be a bounded regular Borel measure and let T be the
Li-spectrum. Let o € (Dom 7*)° = (Qin, ¥max ). Then

(i) If amin < & < g, then dimy K (o) < 7%(a);
(ii) If ap < & < unax, then dimy K(a) < 7%(a).

Our main question is to show that f(a) := dimy K, = 7*(a), i.e., the
validity of the multifractal formalism. So far a complete answer is still not in
sight. The following is a simple case with an elegant proof.
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Theorem 5.6. Let u be a self-similar measure defined by {S;}7%;. Let K
be the attractor and suppose that {S;(K)}7; are disjoint, then for a €

(amln)amax) f(a) =T (Oé)

We remark that the disjointness assumption of {S;}7L; here is stronger
than the open set condition, it is equivalent to the condition in (3.5). Using
(3.3) and extending the identity on R, i.e. <

Z alp _T(q) q €R, (5.2)

we see that 7(g) is concave, differentiable and the derivative is

> 1(lna,J)a i (@)
Z] 1(]-an)0, p_y (q)

Hence, by the digression on concave functions in the beginning of the section,
we have a € 97(q) and 7*(a) = agq — 7(¢). Note that Theorem 3.3 is a special
case of Theorem 5.6 when ¢ = 1 (7(1) = 0 and 7/(1) = «(1)). The main part of
Theorem 5.6 was proved by Cawley and Mauldin {CM)] using 7(g) as defined in
(5.2). That 7(q) is actually the L?-spectrum of u follows from Theorem 3.4 for
g > 0, and for ¢ € R by an independent approach of Riedi [Ril]. This justifies
the multifractal formalism. |

a(=ag) =7'(g) = geR.

In the following we will give an outline of the proof in [CM] which will
also motivate the proof of our next theorem in Section 6. In view of Theorem
5.5, we need only show that dimy K, > 7*(a). The strategy is to redistribute
the mass according to (5. 2) to obtain a measure v. with support contained in
K., and which has local dimension 7*(c) for v-almost all a. Thus Frostman’s
lemma will imply dims K, > dimy, (1/) =T (a)

For this we first introduce some more notations. Let @ = {1,--- ,mN
be the product space and let P be the product measure obtained by assigning
probability weights {a1, "+ ,am} to {1,--- ,m}. For w = (31, v Jmy ), let
Xn(w) = jn, be the nth—coordmate projection of Q onto {1,--- ,m}. Also we
define Z,,Z : Q — R% by

Zn(w)=5;,(0) and Z(w)= lim Sy, (0),
n—r0o0
where J, = (41, ,Jn). Note that the limit exists and is independent of the
initial element, Wthh is 0 here. The separation condition in the theorem implies
that the map Z is one-to-one from {2 onto K. Let K, = Z7Y(K,), it follows

that 1
s={weQ: lim =2 =g} o (53)

n—oo Inpy,




78 - KA-SING LAU

In view of (5.2) we define another product measure () on (2 using the probability
weights {ai’pr(Q), e ,a?np;f(Q)}. Let Y1, Y5 : (, Q) — R be defined by
Yi(w) =Ina;, and Y3(w) = In p4, - By applying Birkhoff’s ergodic theorem to
the shift transformation, we have, for Q-almost all w € Q,

.1 .1 q,—7(q)
nlingo ” Inay, = nli»r%o - Zln a;, = E(Y7) = Z(ln aj)aip; ",
k=1 j=1
1 1 & = ()
im — = lim = L= = Nad Tl
nll)ngo - Inpy, nli)r%o - kzllnp]n E(Y3) .Z;(ln,og)ajp‘7
= J:

Taking ratios we have for Q-almost all w € Q, lim Ina 7. /Inp;. = a. This

implies that ) is concentrated in I/(\'a. Ifwelet v=QoZ !, then

lim Inpu(B Inh =
JHm In p(Ba(z))/Inh = o

for v—almost all z in K, so that the support of v is contained in K. Further-
more, the local dimension of v at z is given by (same reason as (5.3))

—7(q)
i VBi@) _ - nad o -
MBIk kg, T T@=T'@

where £ = Z(w), w = (j1,- - ,Jn, ")y Jn = (1, ,jn). This is the v required

For more recent developments, we mention that Theorem 5.6 has been ex-
tended to vector-valued self-similar measures constructed by the directed graph
method (Edgar and Mauldin [EM] and [Str4]); the finite family of similitudes
in the theorem has been replaced by an infinite family by Riedi and Mandel-
brot [RM]; Olsen [O1] has refined the definition of 7(q), using differently sized
+ covering balls instead of the equal size h-balls in (2.1) and developed a parallel
theory; and lastly, Arbeiter and Patzschke [AP], Falconer [F2] and Olsen [O3]
have obtained analogous results for statistically self-similar measures. |

§6. The Weak Separation Property.

In this section we will introduce a new condition on the family of simil-
itudes {S;}72; so as to relax the condition in Theorem 5.6. Let (2, P) be
the probability space as in the last section. Let p = min{p; : 1 < j < m},
we define, for k£ € N, the stopping time t, : 2 — N by assigning each
w= (J1,- - ,Ji, -+ ) € £, the integer te(w) =min{i: pg;, .. 7,y < p*). Let

Ak:{J:(]h ajtk(w)): w:(jl,"‘ 7.717)6(2}
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Intuitively Ay contains all the indices such that the corresponding contracting
ratio are almost equal to p*. Let

Ek :Z?k(ﬂ)) E:Z(Q) (: K)1

and let y, , i be the corresponding measures induced on Zr and 2 respectivqu;
then {u, } converges to p in distribution.

Definition 6.1. A family of similitudes {S;}72, is said to have the weak sep-
aration property (WSP) if there exist a zp € R% and an £ € N such that
for any z = Si(z0) (I a finite multi-index), every closed pF-ball contains at
most ¢ distinct Sy(z),J € Ag. (The S;(2)’s can be repeated, i.e., we allow
SJ(Z) = SJ/(Z) for J, J e Ay, J 7& Jl)

In view of the fact that the invariant measure is independent of the initial
point of the iteration, we will take zg = 0 for convenience. It is easy to see that -
{S;}7x, will have the WSP if there exists b > 0 such that for any Ji, Ja € Ay,
k € N, and for any z = S7(0), either

Sn(2) = Sn(2) or |Ss,(2) = Sn ()] = bo. (6.1)

As is known, self-similar measures can be obtained by iterating {S;} starting
on any compact set or at any point, the main idea of the WSP is that instead of
considering ‘set’ separation in the iteration, we consider ‘point’ separation for
the iterated points that are distinct. This allows us to include more important
cases.

Example 1. Suppose {S; }3":1 satisfies the open set condition, then it has the
WSP. Indeed if we let U be the open set guaranteed by the open set condition,
we can fix any zo € U and let B,.(20) C U for some r > 0. Let Ji, J2 € Ay with
Jl 7é JQ and let

le(ila"' ,in)7 J2:(j1a'” ’jl)‘ |
Let n’ be the first integer such that ¢; # 7; and let
J;L:(/I::l’... 77:41)’ Jé:(jla"' 7.7%)

The open set condition implies that Sy (U) N Sy (U) = 0, so that Sy, (U) N
S7,(U) = 0. Since

pFtidiam U < diam Sy, (U) < pFdiam U, 1=1,2,
we have | Sy, (z0) — Sz, (20)| > (2pr)p*. The same holds for z = S7(20) and (6.1)

implies that {S;}72; has the WSP.
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Example 2. Suppose 1/2 < p < 1 and plisaP.V. number, then the ICBM
 considered in Section 4 has the WSP. This is in fact a consequence of Propo-
-sition 4.3.

Example 3. In wavelet theory, a fundamental equation is the two-scale dila-

tion equation
m

$(z) = cjp(2z —j), zeR

J=0

where ) ¢; = 2, ¢; € R. The continuous non-zero Ll-solution has compact
support [0,m] [DL1]. Note that if we let S;(x) = %x + %, j=20,---,m and
p(—oco,z] = [ ¢(z)dz, then u satisfies p = Dieo GpoS;tasin (1.1). (The
coefficients need not be positive here.) If m > 2, the family {S;}7Lo does not
satisfy the open set condition, but for any J1,J2 € Ay, either

1
SJI (O) = SJ2(O) or ,S«h(o) ~S~]2(O)l = 51;
This implies that {S;}7-, has the WSP. We will return to this class of functions
in Section 7. '

For k < k', 2x € Zy(Q), 21 € Zx(S2), we say that 2y can be reached
by 2 if there exists w = (41, , i, - - - v ks o+ ) € Q such-that 2, = Zj(w)
and 2z = Zp:(w). The following proposition is the main reason to consider the
WSP; it allows us to have a good control of the number of paths between the
states.

Proposition 6.2. Suppose {S; }7%1 has the WSP. Then there exists an ¢, such
that for k < k' and for 2z, € Ex, there are at most ¢y distinct 2, € 5 that
can reach zj

Proof. Let Sjz = p;R;z + b; and let ry = (max;]b;]) Y722 | (maxp;)t. Suppose
" 2 can reach z;. Then

k/
2 =26l <| D px, - px;  Rx, 0+ 0 Ry, (bx,)| < rop",
j=k+1 :

Le, zr € B, k(zx). By the WSP, there are at most ¢ distinet 2z in any
(rop*)-ball if ro < 1, and at most £[2rg]? of such z if ro > 1. This proves the
proposition.

Let 07(0) = [a, of ]. Our main theorem is the following:
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Theorem 6.3. Let p be a self-similar measure defined by {S }it, and let 7(g)
be the Lq—spectrum Suppose {S; }J 1 has the WSP and 7" is stnct]y concave

at o € (Qmin, o) (in this case 0 < g € 07*(wv)), then

In u(B
fla) = dimH{z hrglJr ~n—&§n—g(zl)— = a} = 7"(c).
" Tn view of Example 1, Theorem 3.4 and the differentiability of 7(g), we
can improve Theorem 5.6 as:

Corollary 6.4. Suppose {S;}7>, satisfies the open set condition. Let p be
a self-similar measure with Li-spectrum 7(q). Then f(a) = 7*(a) for o €

(amina O‘E)'— )
Also by Example 2 and Theorem 4.5, we have

Corollary 6.5. Let p = (v/5 — 1)/2 and let u be the corresponding ICBM :
then f(a) = 7*(a) for a € 07(q),0 < q¢ < 3.

The proof of Theorem 6.3 is different from Theorem 5.6 in that there is no
explicit expression of 7(q) for u; furthermore the probability measure P on €2
representing . does not give tractable information about 1, and we need to look
for a new “coding space”. For each fixed k, the random variable Z;, : Ay — Ey
is given by Z;, (J) = Ss(0). We will consider the product spaces Zj and =N
with product measure (us, )" and (e, )N respectively. For each multi-index
J=(J,,Jn ),Ji € Ay, we define the truncated index J = (Jl, ,Jn)
where J; = (Jz,J{) and (Ji,-+ ,J;) € Ak for cach 7 = 1,- n. (In the case

when P1 = = Pn; '] J. )

Lemma 6.6. For each k, there exists g( On) @ Ef — Zgn such that

(i) For each &€ = (&1, ,&n) € BF, 9(€) = S5(0) where
J:(Jl,"- ,Jn) with SJ (0) gz,

(11) FOI' (&1’ . 7£na t ) let E?’L - (517 ot 76'11) and Zn = g(é’ﬂ)? then
{zz ! is a path that reaches z, and limy, o g(En) exists;

(111) g:E} — By Is at most £y to 1 where £y is some fixed integer;

(iv) For zn € g(8%), (utk)"(g‘l(zn)) < L3 ugen (25) for some fixed integer
3. v '

By (ii) we can define g : EY — Z such that g(£) = lim,—c09(€n). We use
Ei’ as the “coding” space through the map g. We will next construct a measure
@ on EI,:I and v on = as in Theorem 5.6: after strengthening Theorem 5.4 we
can find a large k and a subset E C Zj such that

#E s pPCT(@ED and e (6) & aﬂ), £ECE.

Note that all the £’s in E have “almost” equal probabilities. We define the
uniform probability measure on E by assigning the probability (#F)~* to each
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13 6 E and let @ be the product measure on uk Then @ is concentrated on
EN C =N

Let v, and v be the induced measures of Q on Zj,, and Ek respectively.
We can obtain good control of v and v, using Lemma 6.6, namely, there exists
a subset H € EN such that for G = g(H), v(G) > %, and for 2, € G, =
9UHIn), v () 7 ol @),

Hence the scaling exponent of v at z € K, is of order 7*(c) 7. Further-
more, if we let

1 : — Inu(B
Ke(a):{ZEE:a—e<]_ij‘Shm_n_/~‘(__h_@_)_
h—0+ Inh h—0+ Inh

< -+ e},

(6.2)
then by suitably choosmg k we can show that K (a) 2 G. Frostman’s Lemma
will imply that the Hausdorff dimension of the set in (6.2) is greater than or
equal to 7*(a) — 7', so that lim,_,¢+ dimy K (o) > dimy G > 7*(a)

Note that (). Ke(a) = {2z : limp_o+Inu(By(2))/Inh = a}. However,
this does not imply that lime o dimy (5o Ke()) = dimp(K(a)). In order
to replace the set in (6.2) by {z € g(EN) : limy,_,o+In u(Bp(2))/Inh = a}, we
have to replace the fixed € by a sequence {ex} \, 0, and the fixed &k, = =R etc. in
the above proof have to be adjusted to a varying k accordingly. The complete

proof is given in [LN1].

§7. Scaling functions. :
A nonzero function ¢(z) is called a scaling function if it satisfies the two-

scale dilation equation
m

$(z) =) c;6(2 - j), - (7.1)

=0

where ¢; € R. Such functions play significant roles in wavelet theory, con-
structive approximation theory and fractal geometry. As mentioned in Section
6, Example 3, we can regard the function as the invariance of the IFS with
Sjx = %(a: +7), 7=0,--- ,m. The equation always has a distribution solution
[DL1], [Str6], but the main interest is on the existence and regularity of the
compactly supported continuous or LP-solutions (notation L2-solutions); these
depend on the coefficients c;. For the regularity we will use the L?-Lipschitz
exponent defined by

Lipg(¢) = lim inf 1229l

>1
h—0+ Inh =45

where App(z) = ¢(z + h) — $(z). It is easy to show that Lip,(¢) = inf{0 <
s: 0 <limsupy,_,g+ h™%||Apd|lq}. This exponent was introduced by Hardy and
Littlewood and is used frequently in harmonic analysis [St]. Its counterpart for
measures is the L?-dimension discussed in the previous sections.




SELF-SIMILARITY, LP-SPECTRUM AND MULTIFRACTAL FORMALISM 83

In [DL1] Daubechies and Lagarias proved that if (7.1) has an integrable
solution, then Y c¢; = 2* for some integer k > 0. This k is the order of zero of

the Fourier transformation ¢ at 0, and k = 1 if [ ¢(z)dz # 0. We will hence
use the natural assumption ) c¢x = 2 unless otherwise speciﬁed. The existence
and regularity of compactly supported continuous scaling functions have been
studied in detail by Daubechies and Lagarias [DL1,2] and Colella and Heil
([CH],[H]) using the joint spectral radius. The reader can refer to [H] for the
very readable exposition.

In the following we will discuss some recent development concerning the
LP-scaling functions. We will use the following linear algebraic set- up (see
[DL1], [CH], [MP]): Let Ty = [e2i—j—1]1<i,j<m and

T = [CQZ—_y]lg'L,jSma Le.,

rcg O 0 0 17 ¢y ¢ O 0 7

co €1 Co 0 c3 ¢ ¢ - O

TOIZ c4 C3 C9 0 , Tl — [ C5 C4 C3 0
0 0 O -+ cpa1d [0 0 0 - cpd

For any g € L4(R) with support in [0,m], let g(z) be the vector-valued function
representing g :

g(x) = lg(z),9(z + 1), ,g(z +(m -1, z€[0,1]
and let :
Tog(2x) if z €0, %),
Tig(2z —1) ifz€[3,1)

Tg(z) = {

It is easy to show that ¢ is a solution of (7.1) if and only if ¢ = Tqb, equivalently
¢="To poSy ' +T1 oS

where S;z = & (z +1),7 = 1,2. This is a vector form of the self-similar measure
(see Section 3) With no confusmn we use || - || to denote the L4-norm of g and
also that of the vector-valued function g. For J = (j1,... ,Jk), ja =0or 1, we
use Iy = Ij,,... jo) = [a,]) to denote the dyadic interval where

J1 ., J2 Jk _ 1
:E—’—?—l— +§‘E and b—-a+2—k—,
and gr means the average |I|™ ! f 19 xz)dx of g on an interval I. By a 2-

eigenvector we mean the right elgenvector of a matrix with eigenvalue 2. We
first give a necessary condition for (7.1) to have an Li-solution [LW2].
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Proposition 7.1. Assume z i=0Cj = 2. For 1 < j < oo, let ¢ be an Li-
solution of (7.1) and let v = [915[0 15+ » Pm—1,m))* be the vector defined by the
- average of ¢ on the m subintervals. Then :
(i) v is a 2-eigenvector of (Ty + T). :
(i) Let ¢po(z) = v, z € [0,1), and let ¢pyq1 = Ty, n = 0,1,..., then
¢n($) - E|J{:n(TJU)X.’J (), z € [0,1), '
and ¢p — ¢ in L([0,1],R™).

'To look for a criterion for the existence of an Li-solution, the above propo-
sition suggests that we should concentrate on the 2—elgenvector of Ty +Ti. Let
v be such a vector, then (Ty — Iv = —(T} — . Let © = (Tp — Iv and let
{#r}32, be defined as in the proposition, then ¢, = ¢y + > (¢k+1 — ¢i)
and

11— 6u1F = grer 3 (T (T = 1ol + 250~ 1y

|J|=k

= X Il a9

| J|=k

If 2% ZIJI _ IT79[|9 — 0, it can be shown that it actually converges at a geo-
metric rate, hence {¢,} converges and the limit gives the Lq solution. Indeed
we have the following stronger result [LW2]:

Theorem 7.2. Suppose ZJ —0¢ =2 and 1 < q < oco. Then Equation (7.1) has
a nonzero Li-solution if and only if there exists a 2- o1genvector v of (Ty + Ty)
satisfying

Jim Z T8 = 0.

|J|=n

|

Amazingly, under some slightly stronger conditions, the rate of conver-
gence of the above sum actually gives us the L9-Lipschitz exponent of f [LM].

Theorem 7.3. Assume > ¢y, = d>comr1=1landlisa simple eigenvalue of
Ty and Ty. Let ¢ be a Li-solution of (7.1), then for 1 < q < oo,

Lip,(¢) = liminf @72 g1 I7301%).

im in T (7.3)

As an example we consider the dilation equation ( 1) with four coef-
ficients satisfying co + cg = ¢; + ¢5 = 1, g + c3 = 5. This includes the
Daubechies scaling function Dy where cg = (1 +v/3)/4, C3 (1=+/3)/4. Note
that w = [0,1, -1]*, h =[1,-2,1]* are elgenvectors of Ty corresponding to the
eigenvalues 3 L and ¢ respectlvely, also Tyu = 2u + coh and T\ h = (l —¢p)h.

]»—-A
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By using {u, h} as a basis of the subspace H(v) spanned by the T;0’s, we can
rewrite Ty and 77 on H (D) as ,

1
£ 0 5 0
0 cof’ Co % — Co
Let By = ¢ and By = 5 — ¢g. Then the
corresponding matrlx of Ty on H(D) is
’{2“”. 0
Ar opa )’

WhGI‘G )\J = ,Bo(j12;(n—1) +j22—(n_2):8j1 + - ‘I"jn/le Tt IBjn—l) and . .
7= BB, B, Ji = 0 or 1. A direct estimation of the right side of (7.3) .
yields . '

: . @27 (|eol? + 15 = col))
Lip,(¢) = mm{l, —gIn 22 } (7.4)
This formula was also proved by Daubechies and Lagarias [DL3] using a more

complicated estimation and the additional assumption that —é— <y < %.

For the existence and the regularity of L2-solutions, we can adopt the
following simpler approach and obtain some sharper results. For g € L*(R)
with support in [0, m], let Sg(z) = Z;’;O ¢;9(2z — j), and let a(g) denote
the autocorrelation vector where each coordinate is given by a;(g) = [ g(z +
])g(:v) d:v,_\ —m Sj S m. Let W = [wi—2j]-m§i,j§m with Wy = Zk: CrkCl—m,
then a direct calculation yields o

a(Sg) = 4Wd@) o (7.5)

If we use (Sg — g) as an initial function and iterate (7.5) n-times, we have

a(5"(Sg— 9)) = 5 W"a(Sg ~ ).

Observe that if {S™g}o2; converges to a nonzero function in L2 then the
limit will be a solution of (7.1). The left hand side will also converge to 0,
and the moduli of the eigenvalues of W restricted to the subspace spanned by
an(Sg — g) must be less than 2. If we use g = Z;n 1 ViX[j—-1,5), this actually
gives us a necessary and sufficient condition for the existence of L2-solut10ns
[ILMW]. It yields directly the following simple criterion. ‘ :
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Corollary 7.4. If Y coj = caj41 = 1, and the 2-eigenvalue of W is simple,
then (7.1) has an L2-solution. .

By symmetry we can reduce the size of W by half by defining W as

+ { W_g4 if 1= 0,

W = e 0<4i jg<m.
Wi—25 + W—j—2j if 7> 0,

L)

(W is the “folding” of W onto the non-negative coordinates.)
Let M\, = max{|A] : X is an eigenvalue of W+ and |\| < 2}. We have

max

the following sharp regularity estimation of f:

Theorem 7.5. Assume ) ¢, = 2. Let f, a, and A}, be defined as above.
Let o = —In(M},,/2)/(21n2) and let k be the largest geometric multiplicity
among those eigenvalues A of W such that |\ = At . Then

1 [
W/ | A f(2)|? dz = p(h) + o(1) as h — 0F,

where p is a nonzero, bounded continuous function and p(2h) = p(h). In par-
ticular Lip,(¢) = a.

The theorem is similar to Theorem 4.4 where W and {0,--- ,m} here
correspond to the T and I‘BL there. The basic idea of the proof is also similar,
but there are additional complications because the coefficients are not positive
[LMW]. We remark that Corollary 7.4 had also been proved by Cohen and
Daubechies [CD] and Villemoes [V] through a Fourier transformation approach.
‘They also proved the last statement of Theorem 7.5 in terms of the Sobolev
exponent and Besov spaces and under the additional condition that doco =

> caj1 = L.

There are”also physical models on the multifractal structure of functions
constructed from the cascade algorithm (e.g., Frish and Parisi [FP] investigated
the Hausdorff dimension of the set of points of Lipschitz order « in the velocity
field of a turbulence). For a compactly supported continuous ¢, we define for
q>0,

_ o An [ [ARg(z)|9dz
7(9) = liminf Inh B

It follows that for ¢ > 1, 7(¢) = g Lip,(¢) + d. The corresponding multifractal

formalism is , In [And(@)
N o InfApg(z)]
() = dimy{z : hgrgl+ —n - al.
In [J] Jaffard had carried out a detailed study of the multifractal formalism for
general functions, and for self-similar functions assuming the open set condition.

Note that the class of scaling functions is not included in his study because the
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corresponding IFS generate overlaps. In [DL3] Daubechies and Lagarias made
a first attempt to understand the formalism for the scaling functions. They
considered a small class of such functions (see the example following (7.3)) and
calculated the L9-spectrum and the local dimension spectrum f(a) = dimy{z :
limy_o+ In|Apd(z)|/Inh = a} explicitly. It was found that the L9-spectrum
has one non-differentiable point (it shows in (7.4)) and that f(«) has a jump
at o = 1. The multifractal formalism is not true in their case. However, 7*(q)
still equals the concave envelope of f(«).

The calculation used in [DL3] is very restrictive and there is no general
theory in this direction yet. It is not known whether the point o = 1 for which
f(a) fails the formalism is genuine or special (it is known in harmonic analysis
that the Lipschitz exponents at the integer point behave slightly differently
[St]). Since the IFS for the scaling function satisfies the WSP in section 6, and
that the results from [DL3] still agree with Theorem 6.3, it will be interesting
to extend the proof of the theorem to cover the case of signed weights for '
measures and functions. Moreover Theorem 7.3 provides a general expression
for the Lipschitz exponent of the scaling functions which will also be useful to
determine their multifractal structure.
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